
Journal of Computational Physics 229 (2010) 7893–7910
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
A fourth-order divergence-free method for MHD flows

Shengtai Li *

Theoretical Division, MS B284, Los Alamos National Laboratory, Los Alamos, NM 87545, United States

a r t i c l e i n f o
Article history:
Received 18 February 2010
Received in revised form 24 June 2010
Accepted 30 June 2010
Available online 6 July 2010

Keywords:
Finite-volume method
Central schemes
High order
Non-oscillatory
Constrained transport (CT)
Divergence-free reconstruction
Overlapping cell
Magneto-hydrodynamics (MHD)
Turbulence
0021-9991/$ - see front matter Published by Elsevie
doi:10.1016/j.jcp.2010.06.044

* Tel.: +1 505 665 8407.
E-mail address: sli@lanl.gov
a b s t r a c t

This paper extends our previous third-order method [S. Li, High order central scheme on
overlapping cells for magneto-hydrodynamic flows with and without constrained transport
method, J. Comput. Phys. 227 (2008) 7368–7393] to the fourth-order. Central finite-volume
schemes on overlapping grid are used for both the volume-averaged variables and the face-
averaged magnetic field. The magnetic field at the cell boundaries falls within the dual grid
and is naturally continuous so that our method eliminates the instability triggered by the
discontinuity in the normal component of the magnetic field. Our fourth-order scheme
has much smaller numerical dissipation than the third-order scheme. The divergence-free
condition of the magnetic field is preserved by our fourth-order divergence-free reconstruc-
tion and the constrained transport method. Numerical examples show that the divergence-
free condition is essential to the accuracy of the method when a limiter is used in the recon-
struction. The high-order, low-dissipation, and divergence-free properties of this method
make it an ideal tool for direct magneto-hydrodynamic turbulence simulations.

Published by Elsevier Inc.
1. Introduction

In a previous paper [1], we described a third-order divergence-free central scheme on overlapping cells for magneto-
hydrodynamic (MHD) flows. The divergence-free condition of the magnetic field is preserved locally by the constrained
transport (CT) method [2]. The CT method uses a staggered approach and demands calculation of the electro-motive force
(EMF) at the cell corners (2D) or cell edges (3D). For Godunov methods using a single grid, the EMF is usually calculated
as the flux at cell faces and then a spatial averaging (e.g., [3]) or interpolation (e.g., [4]) is used to obtain the EMF at the stag-
gered position. The overlapping cells provide a natural way to calculate EMF using high-order method without spatial aver-
aging or interpolations (see [1]). The overlapping cells also naturally preserve the continuity of the normal component of the
magnetic field at the cell faces so that our schemes do not suffer from the instability described in [5].

The extension of the third-order central scheme of Liu et al. [6] to the fourth-order scheme for the cell volume-averaged
variables is straightforward. Although the least-square reconstruction method proposed in [6] can be used in any high-order
method, it is more expensive than the method that uses less information around the cell. Since the reconstruction is used in
every stage of a Runge–Kutta method in a time integration, we propose a simplified fourth-order reconstruction to reduce
the computational cost.

We also extend our third-order divergence-free reconstruction [1] to the fourth-order method. Unlike the third-order
method, the available reconstruction information from the cell faces is not sufficient to determine a fourth-order diver-
gence-free reconstructed polynomial over the whole cell. An additional constraint from nearby cells is needed.
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For MHD flows that contain shock and contact discontinuity, we use an essentially-non-oscillatory (ENO) reconstruction
to preserve the monotonicity of the fluid variables. This limited reconstruction uses only adjacent nearest neighbor via a
hierarchical procedure (see [6]) to keep the stencil compact. To reduce the overshoots/undershoots near the discontinuities,
we adopt a new technique proposed in Liu et al. [7], which lowers the order of the remainder of polynomial in the current
cell during the hierarchical reconstruction.

As noted in our previous paper [1], the divergence error of the magnetic field in central schemes without CT is relatively
smaller than that in the upwind-type schemes. Most of problems can be solved quite well without the divergence-free con-
straint. However, this conclusion is no longer true for the fourth-order method. Our numerical examples show that if a lim-
iter, which is required for problems involving the discontinuities, is used in the reconstruction, the divergence error of the
fourth-order method increases dramatically such that it not only degenerates the accuracy of the method but also can break
down the simulations.

The outline of the paper is as follows: In Section 3, we review the central schemes on overlapping cells and propose a
fourth-order central scheme for both the volume-averaged variables and the face-centered magnetic field. In Section 4,
we derive a fourth-order divergence-free reconstruction. Several examples are given in Section 5, demonstrating the effec-
tiveness of our scheme.
2. Ideal MHD equations

The ideal MHD equations in conservative form can be written as
qt þr � ðqvÞ ¼ 0;

ðqvÞt þr � qvvT þ pI� BBT
h i

¼ 0;

Bt �r � vBT � BvT
� �

¼ 0;

Et þr � ½ðEþ pÞv � Bðv � BÞ� ¼ 0;

ð1Þ
where q is density, v is the velocity, B is the magnetic field, I is the 3 � 3 unit tensor, E is the total energy per unit volume,
and p = pgas + B � B/2 is the total pressure, where pgas is the gas pressure that satisfies the equation of state,
pgas ¼ ðc� 1Þ E� 1
2
qv � v � 1

2
B � B

� �
;

and c is the adiabatic index for the ideal plasma. One external constraint for magnetic field is the divergence-free condition
r � B = 0.

Generally, the induction equation for the magnetic field can be written as
@B
@t
¼ �r� E; ð2Þ
where the electro-motive force E is defined as E = �v � B + gJ, J =r� B is the current density, g is the resistivity. For ideal
MHD, g = 0. From now on, we will consider only the ideal MHD in this paper.

To preserve the divergence-free condition of the magnetic field, we adopt the constrained transport approach
[2,8,9,3,10,11], which uses the staggered grid and treats the magnetic field as the face-centered area-averaged variables
and other fluid quantities (e.g., density, momentum, pressure and total energy) as the cell-centered volume-averaged
variables.
3. Central schemes on overlapping cells

3.1. Central schemes for the volume-averaged variables

For the sake of a self-contained presentation we summarize the central scheme presented by Liu et al. [6]. Denote the cell-
centered variables as u, and rewrite their equations as a system of conservation law
@u
@t
þr � FðuÞ ¼ 0: ð3Þ
For simplicity, we assume a uniform staggered rectangular mesh depicted in Fig. 1 for the 2D case. Let {CI+1/2}, I = i, j be a par-
tition of R2 into uniform square cells depicted by solid lines in Fig. 1 and tagged by their cell centroids at the half integers,
xI+1/2 :¼ (I + 1/2)Dx. Let UIþ1=2ðtÞ be the numerical cell average approximating ð1=jCIþ1=2jÞ

R
CIþ1=2

uðx; tÞdx, in particular,
Un

Iþ1=2 ¼ UIþ1=2ðtnÞ. We will denote these cells as U-cell subsequently. Let {DI} be the dual mesh which consists of a Dx/2-shift
of the CI+1/2’s depicted by dash lines in Fig. 1. Let xI be the cell centroid of the cell DI. Let VI(t) be the numerical cell average
approximating ð1=jDIjÞ

R
DI

uðx; tÞdx. We will refer these cells as V-cells. The semi-discrete central scheme on overlapping cells
can be written as follows (for detailed derivation, see [12,6]):



Fig. 1. Illustration of the overlapping cells. Both the primal grid (solid line) and the overlapping grid (dashed line) cover the whole domain.
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d
dt

UIþ1
2
ðtnÞ ¼ 1

Dsn

1
jCIþ1

2
j

Z
C

Iþ1
2

VnðxÞdx� Un
Iþ1

2

0
@

1
A� 1

jCIþ1
2
j

Z
@C

Iþ1
2

fðVnðxÞÞ � n ds; ð4Þ

d
dt

VIðtnÞ ¼ 1
Dsn

1
jDIj

Z
DI

UnðxÞdx� Vn
I

� �
� 1
jDIj

Z
@DI

fðUnðxÞÞ � nds; ð5Þ
where Dsn is a parameter dictated by the CFL condition (Dsn = (CFL factor) � Dx/(maximum characteristic speed)), Un(x) and
Vn(x) are higher-order piecewise polynomial approximation on cells CI+1/2 and DI, respectively. The actually time step-size,
Dt, can be much smaller than Ds for convection–diffusion equations. The introduction of Ds avoids the O(1/Dt) dependence
of the dissipation (see [12]) when Dt ? 0.

To achieve the fourth-order accuracy, the volume integrals on the right-hand side of Eqs. (4) and (5) are obtained by inte-
grating a fourth-order reconstruction polynomial exactly, and the face integrals of the flux are calculated by the two-point
Gaussian quadrature rule.

3.2. The fourth-order reconstruction for the cell-centered variables over the cell

The fourth-order reconstruction in cell CJ�1/2 (see Fig. 1) can be represented by a cubic polynomial in 2D,
uðx� xi; y� yjÞ ¼ u0ð0;0Þ þ uxð0; 0Þðx� xiÞ þ uyð0; 0Þðy� yjÞ þ
1
2

uxxð0;0Þðx� xiÞ2 þ uxyð0;0Þðx� xiÞðy� yjÞ

þ 1
2

uyyð0;0Þðy� yjÞ
2 þ 1

6
uxxxð0; 0Þðx� xiÞ3 þ

1
2

uxxyð0;0Þðx� xiÞ2ðy� yjÞ þ
1
2

uxyyð0;0Þðx� xiÞðy� yjÞ
2

þ 1
6

uyyyð0;0Þðy� yjÞ
3
; ð6Þ
where (xi,yj) is the cell centroid of the cell CJ�1/2, and the 10 coefficients, u0,ux, . . . ,uyyy, are to be determined by the known
cell-averaged quantities.

Liu et al. [6] described a fourth-order reconstruction in 2D for the volume-averaged quantities using a least-square ap-
proach. It uses 13 cells (see Fig. 2) to construct a cubic polynomial with 10 coefficients. Using numerical experiments, we
have found that the cost of the fourth-order reconstruction (without limiting) is roughly 70% of the total simulation time.
This is because a dense matrix–vector product (A10,13V13) must be performed for each reconstructed cell.

To improve the computational efficiency without loss of the accuracy, we propose to use a different reconstruction meth-
od. Instead of picking a suitable set of 10 cells, we still use the 13 cells as depicted in Fig. 2. The fourth-order accurate deriv-
atives for cell C7 can be derived easily as follows:
uxx ¼
�u8 � 2�u7 þ �u6

D2x
;

uyy ¼
�u2 � 2�u7 þ �u12

D2x
;

uxxy ¼
ð�u1 � 2�u2 þ �u3Þ � ð�u11 � 2�u12 þ �u13Þ

D2xð2DyÞ
;

uxyy ¼
ð�u3 � 2�u8 þ �u13Þ � ð�u1 � 2�u6 þ �u11Þ

D2yð2DxÞ
:



Fig. 2. Construction of a cubic polynomial for cell C7 using the nearby 13 cells, The dashed line cells are V-cell.
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From uxx and uyy, we can obtain
u0 ¼ �u7 �
1

24
ðuxxD

2xþ uyyD
2yÞ:
The mixed derivative uxy can be calculated using two sets of cells: (1,3,11,13) and (4,5,9,10). We choose the more compact
one, which is (4,5,9,10), to construct the uxy,
uxy ¼
�v5 þ �v9 � �v4 � �v10

DxDy
:

The estimation of the third-order derivatives uxxx and uyyy is a bit more complicated. It requires both U-cell and V-cell.
After manipulations using the volume integrals over each cell, we obtain
uxxx ¼
uxyy þ 4½�u8 � ð�v5 þ �v10Þ þ ð�v4 þ �v9Þ � �u6�

D3x
;

uyyy ¼
uxxy þ 4½�u2 � ð�v5 þ �v4Þ þ ð�v10 þ �v9Þ � �u12�

D3y
:

Finally, the first derivatives can be easily computed with the known information
ux ¼
�u8 � �u6

2Dx
� 1

24
uxyy �

5
24

uxxx;

uy ¼
�u2 � �u12

2Dy
� 1

24
uxxy �

5
24

uyyy:
We have verified that the reconstruction polynomial using the above reconstructed derivatives and coefficients is of
fourth-order accuracy. It can be verified easily that our 2D reconstruction will reduce to the 1D reconstruction for planar,
grid-aligned flows. With the reduced formulation of the derivatives, the computation of the reconstruction reduces to
30% of the total cost.

3.3. The fourth-order central schemes for the face-centered magnetic field

The constrained transport (CT) schemes are built upon area-averaged magnetic field components located at the faces of a
grid cell. The components of the area-averaged magnetic field are placed at different faces. For a 2D example and cell Ci+1/2,j+1/2,
the Bx component is defined as
�bU
x;i;jþ1=2 ¼

1
Dy

Z yjþ1

yj

BU
x ðxi; yÞdy; ð7Þ
where the superscript U in BU
x is used to indicate that the solution is for the U-cells, the lower case b is used to indicate that

this is a face-centered component of the magnetic field while the upper case B is used for the volume-averaged cell-centered
component of the magnetic field. Analogous expressions can be written down for �bU

y;iþ1=2;j. The collocation of variables is illus-
trated in Fig. 3. The overlapping cells DI provide more information for the collocated components of the magnetic field, since
each face of the DI is orthogonal to a face of CI+1/2 at the face center. For a 2D problem, the location of the cell-centered mag-
netic field B of DI is exactly the same as the location of the electric field E of CI+1/2.



Fig. 3. Illustration of the staggered grid and the collocation of the magnetic field. The electrical field E is located at the cell corner. The magnetic field bx and
by, and flux Fx and Fy are located at the face center. The other fluid variables and cell-centered magnetic field Bx and By are located at the cell center.
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The central schemes for the face-centered magnetic field in a 2D grid are
d
dt

�bU
x;i;jþ1

2
ðtnÞ ¼ 1

Dsn

1
Dy

Z yjþ1

yj

bVn

x ðxi; yÞdy� �bUn

x;i;jþ1
2

 !
�

EV
z;i;jþ1 � EV

z;i;j

Dy
; ð8Þ

d
dt

�bU
y;iþ1

2;j
ðtnÞ ¼ 1

Dsn

1
Dx

Z xiþ1

xi

bVn

y ðx; yjÞdx� �bUn

y;iþ1
2;j

 !
þ

EV
z;iþ1;j � EV

z;i;j

Dx
; ð9Þ

d
dt

�bV
x;iþ1

2;j
ðtnÞ ¼ 1

Dsn

1
Dy

Z y
jþ1

2

y
j�1

2

bUn

x xiþ1
2
; y

� �
dy� �bVn

x;iþ1
2;j

0
@

1
A� EU

z;iþ1
2;jþ

1
2
� EU

z;iþ1
2;j�

1
2

Dy
; ð10Þ

d
dt

�bV
y;i;jþ1

2
ðtnÞ ¼ 1

Dsn

1
Dx

Z x
iþ1

2

x
i�1

2

bUn

y x; yiþ1
2

� �
dx� �bVn

y;i;jþ1
2

0
@

1
Aþ EU

z;iþ1
2;jþ

1
2
� EU

z;i�1
2;jþ

1
2

Dx
: ð11Þ
Note that the accuracy of the schemes depends only on the order of the reconstruction polynomial.
3.4. The divergence-free reconstruction over a cell

To achieve the fourth-order accuracy overall, we must have a fourth-order divergence-free reconstruction for the mag-
netic field. For the 2D Cartesian grid, the cubic reconstructed polynomials can be written as
Bxðx; yÞ ¼ a0 þ a1xþ a2yþ 1
2

a11x2 þ a12xyþ 1
2

a22y2

þ 1
6

a111x3 þ 1
2

a112x2yþ 1
2

a122xy2 þ 1
6

a222y3; ð12Þ

Byðx; yÞ ¼ b0 þ b1xþ b2yþ 1
2

b11x2 þ b12xyþ 1
2

b22y2

þ 1
6

b111x3 þ 1
2

b112x2yþ 1
2

b122xy2 þ 1
6

b222y3; ð13Þ
where subscript ‘‘1” denotes the derivative with respect to x and subscript ‘‘2” denotes the derivative with respect to y in all
of the coefficients a* and b*. To have the fourth-order accuracy, we have to have a third-order polynomial profile at the cell
faces. For a 2D problem, we assume the magnetic field at the cell faces has the following form:
Bxðxi; yÞ ¼ af
0ðxiÞ þ af

2ðxiÞyþ
1
2

af
22ðxiÞy2 þ 1

6
af

222ðxiÞy3; ð14Þ

Byðx; yjÞ ¼ bf
0ðyjÞ þ bf

1ðyjÞxþ
1
2

bf
11ðyjÞx2 þ 1

6
bf

111ðyjÞx3; ð15Þ
where the superscript f denotes that the coefficient is for the face reconstruction. Eqs. (12) and (13) have a total of 20 coef-
ficients. Enforcing the divergence-free condition of the magnetic field over the whole cell, we can obtain six constraints
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a1 þ b2 ¼ 0; a11 þ b12 ¼ 0; a12 þ b22 ¼ 0;

a122 þ b222 ¼ 0; a111 þ b112 ¼ 0; a112 þ b122 ¼ 0:
Therefore we have only 14 independent coefficients in Eqs. (12) and (13). The third-order profile on the cell faces by Eqs. (14)
and (15) has 16 defined coefficients, and only 15 of them are independent due to the divergence-free constraint. Hence the
coefficients in Eqs. (12) and (13) are over-determined by the face profile. To resolve this issue, we add two more terms in
both (12) and (13),
Bxðx; yÞ ¼ a0 þ a1xþ a2yþ 1
2

a11x2 þ a12xyþ 1
2

a22y2

þ 1
6

a111x3 þ 1
2

a112x2yþ 1
2

a122xy2 þ 1
6

a222y3 þ 1
24

a1111x4 þ 1
6

a1222xy3; ð16Þ

Byðx; yÞ ¼ b0 þ b1xþ b2yþ 1
2

b11x2 þ b12xyþ 1
2

b22y2

þ 1
6

b111x3 þ 1
2

b112x2yþ 1
2

b122xy2 þ 1
6

b222y3 þ 1
6

b1112x3yþ 1
24

b2222y4; ð17Þ
where we have a total of 24 coefficients. Imposing the divergence-free conditions in a continuous sense yields two additional
constraints on the coefficients:
a1111 þ b1112 ¼ 0; a1222 þ b2222 ¼ 0: ð18Þ
Thus we have total 16 independent coefficients in the polynomials given by (16) and (17). However, we have only 15 inde-
pendently-defined coefficients by the face profiles. It seems that the information of reconstruction at four faces is not enough
to construct a divergence-free fourth-order reconstruction over the whole cell. The problem lies in the mixed derivative a112

or b122, which cannot be well-defined to achieve the fourth-order accuracy by just using the four-face profiles. One more
constraint on the coefficients is needed to obtain a solvable system.

The extra constraint that uses the most compact stencil is from the V-cell,
�bV
x;iþ1

2;j
� �bV

x;iþ1
2;j�1 ¼

1
Dy

Z y
jþ3

2

y
jþ1

2

B1 xiþ1
2
; y

� �
dy�

Z y
jþ1

2

y
j�1

2

B1 xiþ1
2
; y

� �
dy

0
@

1
A ¼ a2 þ

1
12

a222D
2y

� �
Dy ð19Þ
Matching Eqs. (16) and (17) at the cell faces with Eqs. (14) and (15), and using the constraint (19) gives the following
solutions for the coefficients
a12 ¼ �b22 ¼
afR

2 � afL
2

Dx
; ð20Þ

a22 ¼
afL

22 þ afR
22

2
; ð21Þ

a122 ¼ �b222 ¼
afR

22 � afL
22

Dx
; ð22Þ

a222 ¼
1
2

afR
222 þ afL

222

� �
; ð23Þ

a1222 ¼ �b2222 ¼
afR

222 � afL
222

Dx
; ð24Þ

a2 ¼
�bV

x;iþ1
2;j
� �bV

x;iþ1
2;j�1

Dy
� 1

12
a222D

2y; ð25Þ

a112 ¼ �b122 ¼
1
2

afR
2 þ afL

2

� �
� a2

� �
8

D2x
; ð26Þ

b12 ¼ �a11 ¼
bfT

1 � bfB
1

Dy
; ð27Þ

b11 ¼
bfB

11 þ bfT
11

2
; ð28Þ

b112 ¼ �a111 ¼
bfT

11 � bfB
11

Dy
; ð29Þ

b111 ¼
1
2

bfT
111 þ bfB

111

� �
; ð30Þ

b1112 ¼ �a1111 ¼
bfT

111 � bfB
111

Dy
; ð31Þ
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a0 ¼
1
2

afL
0 þ afR

0

� �
� 1

8
a11ðDxÞ2 � 1

384
a1111ðDxÞ4; ð32Þ

b0 ¼
1
2

bfB
0 þ bfT

0

� �
� 1

8
b22ðDyÞ2 � 1

384
b2222ðDyÞ4; ð33Þ

a1 ¼
afR

0 � afL
0

Dx
� 1

24
a111ðDxÞ2; ð34Þ

b2 ¼
bfT

0 � bfB
0

Dy
� 1

24
b222ðDyÞ2; ð35Þ
where the subscripts L, R, T, B denote the values at the left, right, top, and bottom faces, respectively for a specific cell.
Although the constraint (19) has fourth-order accuracy, the 2D reconstruction via (25) and (26) does not reduce to the 1D

reconstruction for planar, grid-aligned flows. For example, for flow along the y-direction, the x-directives should be zero but
a112 calculated using (26) may not be zero. After careful search among all the compact stencils without using additional
ghost cells, we find the following fourth-order approximation from the overlapping cells
a112 ¼
�bV

x;i�1
2;j
� 2�bV

x;iþ1
2;j
þ �bV

x;iþ3
2;j

� �
� �bV

x;i�1
2;j�1
� 2�bV

x;iþ1
2;j�1
þ �bV

x;iþ3
2;j�1

� �
ðDxÞ2Dy

ð36Þ
together with
a2 ¼
1
2

afR
2 þ afL

2

� �
� 1

8
a112D

2x: ð37Þ
It can be easily verified that a112 = 0 for flows along the y-direction.
For non-overlapping grid, the derivative a112 can be calculated as
a112 ¼
a11;iþ1

2;jþ1 � a11;iþ1
2;j�1

2Dy
; ð38Þ
where axx,
* is calculated before hand using (27). This approach can be used in our method too but requires more ghost cells

than either (19) or (36).
We remark that the higher-order terms in a0 and b0 are necessary in order to preserve the divergence-free condition dur-

ing time integration.
Balsara [13] used an energy minimization procedure to determine coefficients a112 without the additional constraint (19)

or (36). For a 2D problem, it leads to a112 = 0, which may not be a fourth-order accurate approximation to the derivatives a112

for a general problem.

3.5. Cubic reconstruction at the face for the magnetic field

In this subsection, we propose three approaches to construct a cubic polynomial for the face-centered magnetic field. We
will take BU

x at the face x = xi of the cell Ci+1/2,j+1/2 as an example.

3.5.1. Cubic reconstruction at the face using only a single grid information
The cubic reconstruction for the magnetic field at x = xi has form
bx xi; yjþ1
2

� �
¼ af

0 xi; yjþ1
2

� �
þ af

2 xi; yjþ1
2

� �
yþ 1

2
af

22 xi; yjþ1
2

� �
y2 þ 1

6
af

222 xi; yjþ1
2

� �
y3: ð39Þ
For simplicity, we drop the coordinate xi from Eq. (39) and integrate it over the three faces of U-cells: �bU
x ðyi�1=2Þ of the cell

Ci+1/2,j�1/2, �bU
x ðyjþ1=2Þ of the cell Ci+1/2,j+3/2, and �bU

x ðyjþ3=2Þ of the cell Ci+1/2,j+1/2, we have
�bU
x yiþ1

2

� �
¼ af

0 yjþ1
2

� �
þ 1

24
af

22 yjþ1
2

� �
ðDyÞ2; ð40Þ

�bU
x yj�1

2

� �
¼ af

0 yjþ1
2

� �
� af

2 yjþ1
2

� �
Dyþ 13

24
af

22 yjþ1
2

� �
ðDyÞ2 � 5

24
af

222ðDyÞ3; ð41Þ

�bU
x yjþ3

2

� �
¼ af

0 yjþ1
2

� �
þ af

2 yjþ1
2

� �
Dyþ 13

24
af

22 yjþ1
2

� �
ðDyÞ2 þ 5

24
af

222ðDyÞ3: ð42Þ
Since we have four coefficients in Eq. (39), we need another constraint in addition to Eqs. (40)–(42). We choose to use
�bU
x yiþ5

2

� �
� �bU

x yi�5
2

� �
¼ 4af

2 yjþ1
2

� �
þ 17

6
af

222 yjþ1
2

� �
: ð43Þ
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Solving the above equations, we obtain
Fig. 4.
the V-c
of �bU

y .
af
222 yjþ1

2

� �
¼

�bU
x yiþ5

2

� �
� 2�bU

x yiþ3
2

� �
þ 2�bU

x yi�3
2

� �
� �bU

x yi�5
2

� �
2D3y

ð44Þ

af
2 yjþ1

2

� �
¼

�bU
x yjþ3

2

� �
� �bU

x yj�1
2

� �
Dy

� 5
24

af
222D

2x; ð45Þ

af
22 yjþ1

2

� �
¼

�bU
x yjþ3

2

� �
� 2�bU

x yiþ1
2

� �
þ �bU

x yj�1
2

� �
ðDyÞ2

; ð46Þ

af
0 yjþ1

2

� �
¼ �bU

x yiþ1
2

� �
� 1

24
af

22 yjþ1
2

� �
ðDyÞ2: ð47Þ
3.5.2. Cubic reconstruction at the face using the combined cells
The overlapping cells provide information to construct a more compact cubic polynomial. Similar to the third-order

method [1], we construct a cubic divergence-free polynomial over a virtual cell that fully contains one cell boundary.
Take BU

x at face x = xi of the cell Ci+1/2,j+1/2 as an example (see the left plot of Fig. 4). We choose the virtual cell to be
[xi�1/2,xi+1/2] � [yj,yj+1]. We assume the polynomials of Bx and By over the virtual cell have the same form as Eqs. (12) and
(13), but the coefficients are estimated at the center (xi,yj+1/2) of the virtual cell.

As illustrated in Fig. 4, we will use the combined face-centered U-cell values and V-cell values to construct the third-order
polynomial for Bx. The most difficult part is to find af

222. It requires at least four faces values in y-direction. We choose to use
the four sums from the V-cells to achieve the fourth-order accuracy:
bvTT
x ¼ �bV

x ðxi�1=2; yjþ1Þ þ �bV
x ðxiþ1=2; yjþ1Þ;

bvT
x ¼ �bV

x ðxi�1=2; yjÞ þ �bV
x ðxiþ1=2; yjÞ;

bvB
x ¼ �bV

x ðxi�1=2; yj�1Þ þ �bV
x ðxiþ1=2; yj�1Þ;

bvBB
x ¼ �bV

x ðxi�1=2; yj�2Þ þ �bV
x ðxiþ1=2; yj�2Þ;

af
222ðxi; yiþ1=2Þ ¼

bvTT
x � 3bvT

x þ 3bvB
x � bvBB

x

2D3y
:

ð48Þ
The other derivatives can be constructed using Eqs. (45)–(47).
The above reconstruction requires at least two ghost cells. To make it more compact, we use combined cells to construct

af
222 as follows:
The stencils used in parabolic reconstruction with the combined cell for the face-averaged magnetic fields. The dashed lines denote the boundaries of
ell, and the solid lines denote the boundaries of the U-cell. The left stencil is for the reconstruction of �bU

x , and the right stencil is for the reconstruction
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buT
x ¼ �bU

x ðxi�1; yjþ1=2

� �
þ �bU

x ðxiþ1; yjþ1=2Þ þ 6�bU
x ðxi; yjþ1=2Þ;

bvT
x ¼ 8 �bV

x ðxi�1=2; yjÞ þ �bV
x ðxiþ1=2; yjÞ

� �
;

bvB
x ¼ 8 �bV

x ðxi�1=2; yj�1Þ þ �bV
x ðxiþ1=2; yj�1Þ

� �
;

buB
x ¼ ð�bU

x ðxi�1; yj�3=2Þ þ �bU
x ðxiþ1; yj�3=2Þ þ 6�bU

x ðxi; yj�3=2Þ;

af
222ðxi; yiþ1=2Þ ¼

buT
x � buB

x

� �
� bvT

x � bvB
x

� �
2D3y

:

ð49Þ
Eq. (49) has the same accuracy as (48), but requires only one ghost cell.
Both reconstructions (48) and (49) are more complicated than (44). However, by using the overlapping cells, the recon-

structions become more compact. This can be seen from the radius of the disk that covers the reconstruction stencil. The

radius is 2.5Dy for (44),
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D2yþ 0:25D2x

q
for (48), and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:25D2yþ D2x

q
for (49) respectively. For a uniform grid with

Dx = Dy, (49) is definitely more compact. We have verified that all of three reconstructions achieve the expected fourth-order
accuracy and have found that (49) is the most accurate one with the smallest stencil. Therefore, (49) will be used in all of the
numerical simulations presented in Section 5.
4. Non-oscillatory hierarchical central reconstruction using the second-degree remainder

The central reconstruction out of nearby cell averages generates a polynomial in each cell. For solutions that contain dis-
continuities, Gibbs phenomenon could appear in the reconstructed polynomials. Liu et al. [6] proposed a non-oscillatory
hierarchical reconstruction (HR) procedure to remove the possible oscillations and achieve high resolution near
discontinuities.

HR uses information from only the adjacent cells. It does not need local characteristic decomposition. However, small
overshoots/undershoots after interactions of discontinuities can still be observed especially for fourth- and higher-order
method. Liu et al.[7] proposed a new technique to lower the order of the remainder of the polynomial in the current cell
during HR while maintaining the theoretical order of accuracy. Its application to the cell-centered variable in our MHD prob-
lem is straightforward.

Our fourth-order divergence-free reconstruction involves an additional constraint (19) or (36). The limited reconstruction
for the face-centered magnetic field has little or no impact on the value of a112. Since a112 does not affect the divergence-free
condition, we obtain a limited a112 by applying HR to the cell-averaged magnetic fields. In the following, we will focus on the
HR for the face-centered magnetic field.

4.1. Non-oscillatory hierarchical reconstruction using the second-degree remainder for the magnetic field

To preserve the divergence-free conditionr�B = 0, we must perform the non-oscillatory limiting processing to the central
reconstruction of the magnetic field at the faces. Once we have a high order central reconstruction for the face-averaged
magnetic field for every face, the divergence-free reconstruction described in Section 3.4 can be used as usual.

In [1] we described an HR method using only the single grid information. Here we describe an HR method using the com-
bined U-cells and V-cells. Take the reconstruction of Eq. (14) and the U-face at (xi,yj+1/2) as an example. In the first step, we
take the second derivative with respect to y in (14) and obtain
LU yjþ1
2

� �
¼ af

22 yjþ1
2

� �
þ af

222 yjþ1
2

� �
y; ð50Þ
where xi is omitted from the equation for simplicity. For the faces [yj+1/2,yj+3/2] and [yj�1/2,yj+1/2], we take the second deriv-
atives with respect to y in the reconstructed polynomial of V-cell at yj+1 and yj,
LV ðyJÞ ¼ aV
22ðyJÞ þ aV

222ðyJÞy; J ¼ j; jþ 1:
Then we calculate the face average of LU and LV on their respective faces to obtain LUðyjþ1=2Þ ¼ af
22ðyjþ1=2Þ and

LV ðyJÞ ¼ aV
22ðyJÞ; J ¼ j; jþ 1. With the three new face averages, we can apply the center biased ENO limiter function to calcu-

late a new ~af
222, which is
~af
222 ¼ ENO�

LU yjþ1
2

� �
� LV ðyjÞ

0:5Dy
;
LV ðyjþ1Þ � LU yjþ1

2

� �
0:5Dy

0
@

1
A: ð51Þ
where the ENO limiter is defined as
ENOðc1; c2; . . . ; cmÞ ¼ cj; if jcjj ¼minðjc1j; jc2j; . . . ; jcmjÞ: ð52Þ
and the center biased ENO limiter is defined as
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ENO�ðc1; c2; . . . ; cmÞ ¼ ENO ð1þ �ÞENOðc1; c2; . . . ; cmÞ;
1
m

Xm

i¼1

ci

 !
: ð53Þ
The ENO procedure can be replaced with an MUSCL procedure by a different limiter, such as minmod limiter, van Leer lim-
iter, Woodward limiter, and super-bee limiter.

In the second step, we calculate the first derivative with respect to y in Eq. (14) and obtain its linear part by
LU yjþ1
2

� �
¼ af

2 yjþ1
2

� �
þ af

22 yjþ1
2

� �
yþ 1

2
af

222 yjþ1
2

� �
� ~af

222 yjþ1
2

� �� �
y2: ð54Þ
Similarly, we take the first derivative with respect to y in the reconstructed polynomial of V-cell at y = yJ, J = j, j + 1, and obtain
their linear parts
LV ðyJÞ ¼ aV
2 ðyJÞ þ aV

22ðyJÞyþ
1
2

aV
222ðyJÞy2 � ~af

222 y� yjþ1
2

� �2
� �

; J ¼ j; jþ 1:
Note that ~a222 is the newly updated derivative from the first step. Calculating the face-averaged values of LU and LV at their
respective faces, and applying again the center biased ENO limiter (51), we obtain a new limited second-order derivative ~af

22.
In the third step, we will use the second-degree remainder technique [7] to calculate ~af

y. Rewriting the cubic polynomials
of V-cell at (i, J), J = j, j + 1 with the origin at xi; yjþ1

2

� �
, we obtain the linear parts of the three cubic polynomials as
LU yjþ1
2

� �
¼ a0 yjþ1

2

� �
þ af

2 yjþ1
2

� �
yþ 1

2
af

22 � ~af
22

� �
yjþ1

2

� �
y2; ð55Þ

LV ðyJÞ ¼ aVJ
0 yjþ1

2

� �
þ aVJ

2 yjþ1
2

� �
yþ 1

2
aVJ

22 � ~af
22

� �
yjþ1

2

� �
y2; J ¼ j; jþ 1; ð56Þ
where the new coefficients aVJ
ð�Þ are derived from the reconstructed polynomial of V-cell VJ by moving the origin to xi; yjþ1

2

� �
. Cal-

culating the face-averaged values of LU and LV again at their respective faces, we obtain a new limited first-order derivative ~af
y.

To preserve the face-averaged value, we set
~af
0 ¼ �bx;i;jþ1

2
� 1

24
~af

22ðDyÞ2: ð57Þ
Finally, we obtain the cubic non-oscillatory reconstruction
~bx xi; yjþ1
2

� �
¼ ~af

0 þ ~af
2 y� yjþ1

2

� �
þ 1

2
~af

22 y� yjþ1
2

� �2
þ 1

6
~af

222 y� yjþ1
2

� �3
: ð58Þ
5. Numerical experiment

In this section, we provide some examples to test our fourth-order schemes with divergence-free reconstruction. To
achieve the fourth-order in time, we apply the fourth-order five-stage strong stability preserving Runge–Kutta (SSP-RK) time
integration [14]. For comparison, we also test our code with classical fourth-order four-stage RK method.

As pointed out in [6], the HR is expensive and takes about 64% of CPU time for our fourth-order scheme. As in [6], we use a
low cost smoothness detector which measures the jump of the solution at the cell-center from reconstruction of neighbor
cells. If the jump is smaller than (Dx)2, the cell is considered to be in the smooth region and the hierarchical reconstruction
procedure will not be performed. Usually the density and pressure are chosen as the candidate variables in the smoothness
detector.

For comparison, we quantify the divergence of the magnetic field at the cell center using
r � B ¼ a1 þ b2; ð59Þ
where a1 and b2 are the coefficients of the first-order terms in the reconstructed polynomial of Bx and By, respectively.
The time step is determined by the CFL condition, which depends on the cell size and maximum signal speed over the

whole domain. Without specification, the CFL number of 0.48 is used. Unless specified otherwise, we will use c = 5/3. For
all the examples, we show only the numerical results of the U-cells.

5.1. Circularly polarized Alfvén wave

We first solve the smooth Alfvén wave problem [11] to verify the accuracy of our proposed scheme. This problem de-
scribes propagation of a circularly polarized Alfvén wave in the domain [0,1/cosa] � [0,1/sina] where a is the wave prop-
agation angle relative to the x-axis. The initial conditions are taken as
q ¼ 1; vk ¼ 0; v? ¼ 0:1 sinð2pnÞ; vz ¼ 0:1 cosð2pnÞ;
p ¼ 0:1; Bk ¼ 1; B? ¼ v?; Bz ¼ vz;
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where n = xcos(a) + ysin(a). In this problem, the Alfvén wave propagates periodically towards the origin with a constant
Alfvén speed Bk=

ffiffiffiffiqp ¼ 1 and returns to its initial state whenever t becomes an integer. In our test, we use a = 45�. The domain
is divided into N � N grid. As in [11], for each N, we estimate the relative numerical error of any fluid variable v by
Table 1
Numeri

N

16
32
64

128
dNðvÞ ¼
PN

j¼1

PN
k¼1jvN

j;k � vexact
j;k jPN

j¼1

PN
k¼1jvexact

j;k j
: ð60Þ
Table 1 shows that average numerical errors defined by
dN ¼
1
4

dNðv?Þ þ dNðvzÞ þ dNðB?Þ þ dNðBzÞð Þ;
and the corresponding convergence orders, defined by RN = log(dN/dN/2)/log(2), for both divergence-free constrained trans-
port (CT) method, which is described in Section 3.3), and non-CT central schemes when the limiting via HR is not used.
The results show clearly that we have achieved the expected fourth-order accuracy for both CT and non-CT methods. For
comparison, we also show the numerical errors of the third-order schemes [1]. The computational cost of the fourth-order
method is only double the cost of the third-order method for a grid of 64 � 64. However the accuracy of the fourth-order
method on a grid of 64 � 64 is corresponding to that of 256 � 256 grid of the third-order method. Therefore to achieve
the same accuracy, the fourth-order method is about 32 times more efficient than the third-order method.

Table 2 shows the numerical errors and convergence order when the limiting via HR is used. Since this is a smooth prob-
lem, the discontinuity detector will not activate the limiting procedure. We turn off the detector for this specific test so that
limiting is used everywhere during reconstruction step. Table 2 shows that we still achieve approximately fourth-order accu-
racy with limiting.

5.2. Vortex propagation problem

This test problem was proposed by Balsara [15] for accuracy analysis. The problem is defined in a periodic domain
[�5,5] � [�5,5] with mean flow (q,P,vx,vy,Bx,By) = (1,1,1,1,0,0). The perturbed velocity and magnetic fields are given by
ðdvx; dvyÞ ¼
j

2p
e0:5ð1�r2Þð�y; xÞ;

ðdBx; dByÞ ¼
l

2p
e0:5ð1�r2Þð�y; xÞ:
The vortex propagates along the diagonal direction with period of 10. The pressure determined by the dynamical balance is
given by
dP ¼ j2ð1� r2Þ � l2

8p2 e1�r2
;

where the scaling factor 1=
ffiffiffiffiffiffiffi
4p
p

in the original set-up of [15] has been incorporated into the MHD equations and is not shown
here.
cal errors (dN) and convergence order (RN) for the smooth Alfvén wave problem at t = 2 with and without CT. The limiter is not used.

Non-CT 3rd Non-CT 4th CT 3rd CT 4th

dN RN dN RN dN RN dN RN

0.0663255 – 0.0038659 – 0.0709366 – 0.0040095 –
0.0085469 2.96 0.0002169 4.15 0.0092040 2.95 0.0002308 4.12
0.0010724 2.99 1.310E�05 4.05 0.0011562 2.99 1.407E�05 4.04
0.0001341 3.00 8.129E�07 4.01 0.0001446 3.00 8.750E�07 4.01

Table 2
Numerical errors (dN) and convergence order (RN) for the smooth Alfvén wave problem at t = 2 with
and without CT when the limiting is used everywhere during the reconstruction.

N Non-CT 4th CT 4th

dN RN dN RN

16 0.03368 – 0.02602 –
32 0.0003743 6.49 0.0003416 6.25
64 3.3472E�5 3.48 2.4451E�5 3.80

128 2.3556E�6 3.82 1.6995E�6 3.85
256 1.6057E�7 3.87 1.1419E�7 3.89
512 1.1306E�8 3.82 8.4139E�9 3.76
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We solve the problem with j = l = 5, which yields a stronger vortex than the original setting j = l = 1 of [15]. The accu-
racy of the initial condition is crucial to the convergence test for this problem. Since our numerical method is based on the
finite-volume formulation on the cell-averaged quantities, the initial conditions will have truncation errors if we initialize
them as point values at the cell center. Such error will not affect the convergence order for the low-order (<4) method be-
cause the midpoint rule has the third-order accuracy. The complete set of cell-averaged initial conditions for this problem
can be obtained easily by using analytical integral.

Another factor that affects the convergence order is the domain definition. If we use the above initial conditions on a peri-
odic domain [�5,5] � [�5,5], then the error at the domain boundary is O(e�12) � O(10�6). Any numerical error lower than
that will be contaminated. Due to this initial error at domain boundaries, we cannot obtain the expected convergence order
when the grid is refined sufficiently.

We calculate the average errors of four variables vx, vy, bx, by and the convergence orders after one period (t = 10). Table 3
shows the data without limiter for domain [�5,5] � [�5,5]. Because no limiter is used for this test, the convergence rate
should be close to fourth-order. However, Table 3 shows clearly that the convergence order drops to smaller than two with
the more refined grids for both the cell-averaged (denoted as ‘‘CA” in the table) and the point-value (denoted as ‘‘PV” in the
table) initial conditions (IC). The divergence error max (r � B) keeps the level O(10�6) no matter what refinement we use. We
have verified that the maximum divergence error for the fine grids occurs at the domain boundary rather than at the center
of the vortex. The large error at the domain boundary was also pointed out in Dumbser et al. [16].

To reduce the error related to the domain boundary, we extend our periodic domain to [�10,10] � [�10,10]. The error
with respect to the smoothness at the domain boundary becomes O(e�49.5) � O(10�22), which is below the double precision
requirement.

Table 4 shows the errors for the extended domain. Since no limiter is used, the convergence rate should be fourth-order.
The solution with cell-averaged (CA in the table) initial conditions (IC) converges as expected. However the convergence rate
for the solutions with midpoint initial conditions decreases to the second-order for the refined grid.

We now study the impact of the limiters for this problem. Table 5 shows the errors and convergence rate at one period
(t = 20) for the extended domain [�10,10] � [�10,10]. It is clear that the only the divergence-free CT method with cell-aver-
aged initial condition achieves the expected order of accuracy for both coarse and fine grids. Compared with the data in Table
4, the error for the CT method is double due to the limiter. Again, the convergence rate for the point-value initial condition is
degenerated into second-order at fine grid.

Table 5 also shows that the error for the non-CT method is at least twice as large as that for the CT method. We have found
that the drop of accuracy for the non-CT method in Table 5 is mainly due to the divergence error of the magnetic field. In fact,
the convergence error increases dramatically after four periods (t = 80) for the extended domain. Fig. 5 shows the results of
divergence error of the magnetic fields for grids with different resolutions. For both 200 � 200 and 400 � 400 grids, the max-
imum of jr � Bj increases exponentially at some time and degenerates the accuracy of the numerical methods. Fig. 6 shows
the comparison in the contour plots of pressure with and without divergence-free CT method.

Table 6 shows the error and convergence order at t = 80 for the extended domain. It is clear that solution without diver-
gence-free CT method does not converge when the grid is refined from 200 � 200 to 400 � 400. This indicates that the diver-
gence error of the magnetic field cannot be neglected for a long-time integration if the limiter is used.
Table 3
Numerical errors (dN) and convergence order (RN) for the vortex problem at t = 10 without CT and limiters for periodic domain
[�5,5] � [�5,5]. CA denotes cell average and PV denotes point value.

N Non-CT 4th CA IC Non-CT 4th PV IC

dN RN max(r � B) dN RN max (r � B)

50 9.99E�4 – 9.23E�5 9.77E�4 – 9.2344E�5
100 5.12E�5 4.28 5.46E�6 5.96E�5 4.03 5.8686E�6
200 4.85E�6 3.40 2.36E�6 1.09E�5 2.45 2.3545E�6
400 1.44E�6 1.75 2.10E�6 3.39E�6 1.68 2.1027E�6

Table 4
Numerical errors (dN) and convergence order (RN) for the vortex problem at t = 20 with and without CT for extended periodic domain [�10, 10] � [�10, 10].
Limiter is not used.

N Non-CT CA IC Non-CT PV IC CT CA IC CT PV IC

dN RN jr � Bj dN RN jr � Bj dN RN dN RN

50 3.88E�2 – 9.99E�3 3.98E�2 – 1.04E�3 3.22E�2 – 3.24E�2 –
100 1.76E�3 4.42 1.01E�4 1.74E�3 4.51 1.02E�4 1.52E�3 4.40 1.70E�3 4.25
200 8.53E�5 4.29 5.52E�6 8.40E�5 4.37 5.79E�6 8.11E�5 4.22 1.41E�4 3.59
400 4.80E�6 4.13 3.45E�7 8.69E�6 3.27 4.64E�7 4.79E�6 4.08 2.67E�5 2.40
800 2.90E�7 4.03 2.14E�8 2.04E�6 2.09 3.50E�8 2.94E�7 4.02 6.42E�6 2.05



Table 5
Numerical errors (dN) and convergence order (RN) for the vortex problem at t = 20 with and without CT for extended periodic domain [�10,10] � [�10,10],
Limiter is used everywhere during the reconstruction.

N Non-CT CA IC Non-CT midpoint IC CT CA IC CT midpoint IC

dN RN jr � Bj dN RN jr � Bj dN RN dN RN

50 2.00E�1 – 4.43E�2 2.03E�1 – 4.55E�2 9.66E�2 – 9.60E�2 –
100 2.05E�2 3.28 3.77E�2 2.08E�2 3.28 3.82E�2 5.84E�3 4.04 5.79E�3 4.05
200 8.93E�4 4.52 1.30E�2 1.22E�3 4.09 1.32E�3 1.64E�4 5.15 2.27E�4 4.67
400 2.73E�5 5.03 1.02E�5 1.33E�4 3.20 9.68E�6 1.07E�5 3.94 3.13E�5 2.85
800 1.86E�6 3.88 1.29E�6 3.15E�5 2.09 1.51E�6 6.56E�7 4.02 6.56E�6 2.25
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Fig. 5. Log–linear plot of the divergence error of the magnetic field.

Fig. 6. Contour-plot for the pressure of the vortex problem at t = 80. The left is for the non-CT method, and the right is for the divergence-free CT method.
Thirty contours are used.
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Dumbser et al. [16] suggested another approach to reduce the error at the domain boundary without using the extended
domain. They introduce a parameter q in the initial conditions,



Table 6
Numerical errors (dN) and convergence order (RN) for the vortex problem at t = 80 for simulations with limiters. The
periodic domain [�10,10] � [�10,10] and cell-averaged initial conditions are used.

N Non-CT CT

dN RN max(r � B) dN RN

50 0.840 – 0.0331 0.218 –
100 0.193 2.12 0.0151 0.018 3.60
200 8.57E�3 4.49 0.0015 5.38E�4 5.06
400 8.64E�2 �3.33 0.2051 3.78E�5 3.83

Fig. 7.
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ðdvx; dvyÞ ¼
j

2p
eqð1�r2Þð�y; xÞ; ð61Þ

ðdBx; dByÞ ¼
l

2p
eqð1�r2Þð�y; xÞ ð62Þ
with a balanced pressure given by
dP ¼ j2ð1� 2qr2Þ � l2

16qp2 e2qð1�r2Þ: ð63Þ
For q = 1, the error at the boundary becomes O(e�24) � O(10�11). Dumbser et al. [16] also pointed out that the correct con-
vergence rates cannot be obtained without the use of divergence-cleaning approach proposed in [17]. For comparison, we
solve the problem with initial conditions given by (61)–(63). We apply two approaches to reduce the divergence error when
the limiter is applied everywhere. The first one is the eight-wave approach of Powell [18], and the other is the hyperbolic
cleaning approach of [16]. For the first approach, the r � B related source term is only applied to the induction equation
and therefore the momentum and energy is conserved. We remark that the full eight-wave approach of Powell [18] does
not work well for this problem. For the second approach the artificial speed of the divergence error is ch = 1. Fig. 7 shows
the divergence error of the magnetic field for different approaches. It is interesting to see that the divergence error is smaller
initially (before t = 22) for the approach without divergence cleaning than both divergence-cleaning approaches.

Fig. 7 shows that the hyperbolic cleaning is effective in controlling the divergence error of the magnetic field for a long-
time integration. However, it is not favorable when compared with the divergence-free CT method. Table 7 shows compar-
ison in numerical errors and convergence orders between the two approaches. The output is at five periods (t = 50). For a fair
comparison, only the cell-averaged initial values are used.

5.3. Numerical dissipation and long term decay of Alfvén waves

Next we consider another problem proposed by Balsara [15], which tried to quantify the amount of numerical dissipation
introduced by a numerical scheme for ideal MHD. Specifically, the test problem measures the decay of the amplitude of a
 1e-04

 0.001

 0.01

 0.1

 1

 10

 0  10  20  30  40  50  60  70  80  90  100m
ax

im
um

 d
iv

er
ge

nc
e 

er
ro

r o
f t

he
 m

ag
ne

tic
 fi

el
d

time

without divergence cleaning
8-wave

hyperbolic cleaning

Log–linear plot of the divergence error of the magnetic field for different approaches applied to the vortex problem. 200 � 200 grid is used. Limiter is
erywhere.



Table 7
Numerical errors (dN) and convergence order (RN) for the vortex problem at t = 50 for simulations with limiters. The periodic domain
[�5,5] � [�5,5] and cell-averaged initial conditions (61)–(63) are used. The divergence error for the CT method is O(10�15).

N Non-CT with hyperbolic cleaning CT

dN RN max(r � B) dN RN

50 0.300 – 4.35E�2 7.65E�2 –
100 3.53E�2 3.09 3.03E�2 2.16E�3 5.15
200 5.76E�4 5.94 5.45E�4 1.47E�4 3.87
400 5.74E�5 3.33 1.12E�4 9.78E�6 3.91

S. Li / Journal of Computational Physics 229 (2010) 7893–7910 7907
linearly degenerate Alfvén wave that propagates at a shallow angle to the y-axis. We use the same angle, a = tan
(1/6) = 9.462�, and the same set of initial conditions as Balsara [15] except that the magnetic field is normalized with a
1=

ffiffiffiffiffiffiffi
4p
p

factor. With the normalization, the Bz and vz have the same exact solutions and thus have similar decay rates.
The computation domain is [�3,3] � [�3,3] on a 120 � 120 grid and the output time is t = 129. The maximum values of

the vz and Bz should remain constant in time for the exact solution, but decay due to the numerical dissipation. These quan-
tities are plotted versus time in Fig. 8. Since Bz and vz have similar decay rates, we plot here only the result of vz. For com-
parison, we also provide the result of our third-order method. For the limited reconstruction results, we turn off the
discontinuity detection so that the limiter is used everywhere.

Fig. 8 shows that our fourth-order method has much less numerical dissipation than the third-order method. It also
shows that the divergence-free CT procedure is essential to achieve low-dissipation when the limiter is used. Otherwise,
the divergence error of the magnetic field can grow exponentially at certain time (t = 75) and degenerate the accuracy of
the solution. We remark that the divergence error does not increase much for the third-order method when the limiter is
used, as shown in the bottom right plot of Fig. 8.
Fig. 8. Plots for the decay Alfvén waves. The top left plot shows linear–linear plot for the maximum value of z-component of the velocity (vz). The results for
the two methods without limiter almost overlays on each other. The top right plots shows the log-linear plot for vz with limiters between CT and non-CT
methods. The non-CT method has larger error than the divergence-free CT method. The bottom left plots shows the comparison between the fourth-order
method and the third-order method. The bottom right plots shows the divergence errors for the non-CT fourth- and third-order method when the limiter is
used. The divergence errors for all CT methods are of O(10�14).
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5.4. Orszag–Tang MHD turbulence problem

The problem is a compressible 2D vortex problem and contains many significant features of MHD turbulence. It has be-
comes a standard test problem for 2D numerical MHD simulations (e.g., [8,19,10]). The initial conditions are vx = �sin(y),
vy = sin(x), Bx = �sin(y), By = sin(2x), q = c2, p = c, vz = Bz = 0. The computational domain is a square [0,2p] � [0,2p] with peri-
odic boundary conditions along both boundaries. The final output time is t = p.
Fig. 9. The density and pressure contour plot at t = p for the Orszag–Tang vortex problem. Thirty contours are used.

Table 8
Convergence of averaged relative errors in the Orszag–Tang vortex problem.

t = 0.633 t = 3.14

�d64
�d128

�d256
�d512

�d64
�d128

�d256
�d512

CT 3.10E�4 2.67E�5 1.31E�6 5.27E�8 3.32E�2 1.95E�2 1.04E�2 4.36E�3
Non-CT 3.11E�4 1.77E�5 1.31E�5 5.24E�8 3.52E�2 2.92E�2 1.26E�2 6.57E�3
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Fig. 10. The log–linear plot for the maximum divergence error of the magnetic field versus time at t = p for the Orszag–Tang vortex problem.
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Fig. 9 shows contour plots for the density and pressure at time t = p on a 256 � 256 grid. Our results compare well with
those given in [8,11].

The Orszag–Tang vortex problem starts from smooth initial condition data, but gradually the flow becomes very complex
towards turbulence. Table 8 lists the average relative errors for the primitive variables for four resolutions (64 � 64,
128 � 128, and 256 � 256, 512 � 512 ). The reference solution is calculated with 1024 � 1024 grid. At time T = 0.633, the
flow is still quite smooth, although some discontinuities are already present. We achieve fourth-order accuracy for both
the CT scheme and non-CT schemes at T = 0.633. However, the solutions converge with only first-order accuracy at T = p,
when the shock is dominant in the problem.

Table 8 shows that the non-CT method is comparable to the divergence-free CT method at both output times. However,
when we continue the time integration, we found the divergence error for the non-CT method will grow rapidly with the
time evolution and eventually break down the simulation due to the negative pressure and density in the solutions. For
256 � 256 grid, the negative pressure occurs at about t = 4.34 and negative density occurs at about t = 6.13. Fig. 10 shows
the evolution of the divergence error for both CT and non-CT method. The error for the non-CT method grows up to 70 at
t = 6.13.

The divergence-free scheme is essential for the high-order method to avoid the local instability due to the divergence er-
ror (see [19]). Even the local divergence-free method is not sufficient (see [20]) for this problem if the high-order elements
(e.g., P2 elements are used in a discontinuous Galerkin method in [20]) are used. Surprisingly, our third-order method does
not have such kind of problems. The divergence error for the third-order non-CT method, which is not shown here, begins to
Fig. 11. The pressure slices at t = p and y = 1.9267 for the Orszag–Tang vortex problem.
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decay after it reaches some maximum value (�6) at about t = 4.11. Fig. 11 shows the difference between the third-order
method and the fourth-order method, and difference between with and without CT procedure. Clearly the fourth-order
CT method is closer to the reference solution, which is calculated using the third-order CT method with 1024 � 1024 grid.
It also shows that the shock front is resolved very well without oscillations. The right plot of Fig. 11 shows that non-CT
method introduces some oscillations to the smooth region near x = 2.5. We found that these oscillations are purely effects
of the divergence error introduced near the discontinuities. This indicates the importance of the divergence-free procedure
in the wave development into small scales.

We have also tested the two divergence-cleaning approaches described in Section 5.2. The simulation with modified
eight-wave approach runs smoothly without negative pressure and density for 256 � 256 grid, but failed at t = 6.78 for
512 � 512 grid due to the negative pressure. The simulation with hyperbolic cleaning approach runs well for both
256 � 256 and 512 � 512 grids but failed at t = 5.59 for 1024 � 1024 grid due to the negative pressure. Including parabolic
damping factor cr = 0.18 in the hyperbolic cleaning as suggested in [17] does not help much. The divergence errors for these
approaches are shown in Fig. 12.

6. Conclusion

We have extended our third-order divergence-free method to the fourth-order. Numerical examples show that we have
truly achieved the expected order accuracy for smooth problems with and without limited reconstruction.

Several examples show that the divergence-free CT method is essential for our fourth-order method to achieve the high-
order accuracy. Without CT, the divergence error can grow rapidly and introduce instability to the solutions. This is quite
different from what we obtain for the third-order method [1]. This instability may not show up for just a short-time inte-
gration, as shown in our examples for both smooth and discontinuous problems. But our divergence-free procedure is def-
initely needed for the stability in a long-time integration.

Our fourth-order method also shows very low-dissipation compared with the third-order method. The extension of our
methods to 3D problem is currently in progress and will be reported elsewhere. The high-order, low-dissipation, and diver-
gence-free properties of this method make it an ideal tool for direct MHD turbulence simulations.
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